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CHARACTERISATION OF FRACTIONAL CONVOLUTION
OPERATOR IN TIME DOMAIN

PANKAJ SHARMA AND SREESAIV JM

ABSTRACT. Although the Fourier Transform has vital role in many branches of
science and technology, it comprises some limitations as well. Particularly, its
inability to provide local time-frequency information, which is crucial for analyz-
ing non-stationary signals. To address this issue, the fractional Fourier transform
has been serving as an alternative tool for past many years. In this paper, a
1~ generalised translation of fractional Fourier transform of one dimensional sig-
nal is proposed to characterise a fractional convolution operator in time domain.
This operator satisfies some properties, like properties of conventional Fourier
transform. Through examples, we have shown the novelty of the proposed char-
acterisation.
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1. INTRODUCTION

The Fourier Transform (FT) is a potent tool in both theoretical and applied
mathematics. It has various applications as analyzing signals and processing data
in the transformed domain, the frequency domain. Moreover, other applications
including audio signal processing, communication systems, image processing, seis-
mological signal analysis, econometrics, physical sciences, engineering and quantum
mechanics. Fourier analysis is used in storage and transmission of digital images.
Its inventiveness and power make it a crucial one in many scientific and engineering

fields.

The FT has some limitations, particularly, its inability to provide local time-
frequency information, which is crucial for analyzing non-stationary signals. To ad-
dress this, the fractional Fourier transform (FrFT) was introduced [34]. The FrFT
extends the F'T by introducing a fractional order a. When a = 7, the FrF'T can be
restricted to FT, and when o = 0, it reduce to identity operator [7, 8]. The FrFT,
with given order «, rotates the time-frequency plane by an angle o. The properties
of the FT are special cases of the FrFT [12].

The FrFT has demonstrated extensive applicability across interdisciplinary do-
mains, including computer tomography and cryptography [2, 10]. Unlike traditional
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FT, the FrF'T incorporates an additional parameter «, enhancing its utility in pro-
cessing disorganized signals and pattern recognition [6, 33]. It plays a significant role
in solving differential equations [1, 34]. The development of fractional domain filter-
ing reveals potential improvements over conventional spatial and frequency domain
operations [11, 28]. Moreover, fractional convolution techniques exhibit promising
applications in RADAR systems and digital watermarking [14, 15]. The use of
FrFT in wireless communications and mobile computing is a relevant application
[32]. FrFT-based filtering has also proven effective in image representation, com-
pression, and applications within optics and communication systems [16, 23]. The
continued exploration of FrFT, particularly in filter design, highlights its expanding
potential for practical applications [25].

The Heisenberg uncertainty principle [19, 35] is a fundamental aspect of FrFT.
Generalized Heisenberg-type uncertainty principles [26], extending traditional FT
uncertainty principles, are crucial in various fields due to their association with
numerous inequalities. Additionally, several inequalities and generalizations of the
Wigner-Ville distribution related to linear canonical transforms [24, 27] have been
explored, contributing to various applications. While fractional convolution operator
and their associated theorems are valuable [36] for filtering applications, previous
definitions often lack consistency with established FT theories [4]. Notably, con-
volution theorems developed recently [30] offer enhanced simplicity and coherence
compared to traditional FT-based approaches.

Inspired by the work of K. K. Sharma et al. [22], present paper estabalish the
characterisation of fractional convolution operator and generalised translations for
some angles (). We have discussed a generalised convolution operator in time
domain with the help of a generalised translation operator and derived fractional
convolution theorem. Moreover, we have discussed some properties of generalised
convolution operator. The results are veryfied by some graphical demonstrations.
This paper is organised as follows: some background and preliminaries are given in
section 2. In section 3, the main results are discussed. Finally, the conclusions are
included in the last section.

2. BACKGROUND AND PRELIMINARIES

2.1. Fourier Transform. The FT of the signal s(t) € L?(R), denoted by S(w) is

S(w) = \/LQ_W /R s(t).e dt,

where (.) denotes usual multiplication throughout the paper.

The inverse FT is defined as

1 iwt
s(t) = E/RS(w)e dw.



Characterisation of fractional convolution operator in time domain

Let s1(t), s2(t) € L?(R), then the convolution sq(t) * sa(t) is defined as:

51(t) * s2(t) = s2(t) x s1(t) = /Rsl(t —7).89(1)dT = / s1(7).82(t — 1) dr.

R
As per convolution theorem in time domain:

S(s1(t) * s2(t)) = S(s1(£)).5(s2(1)),

whereas,
the dual of the convolution theorem says that

S(s1(2)-52(t)) = S(s1(2)) * S(s2(1)),

where S(s;(t)) are the Fourier Transforms of the function s;(t), where i = 1,2 [5].

Unlike conventional FT, FrFT can rotate the time frequency plane by any angle
(), not just 90 degrees. FrFT can provide meaningful representation of signals, es-
pecially those with time varying frequencies. In order to reduce the computational
complexities, it is beneficial to look for fractional convolution operators and convo-
lution theorems, since it has vital role in applications such as in filtering, harmonic
analysis, pattern recognition and in allied areas of signal processing.

Fractional convolution extends the conventional signal combination process by
introducing intermediate stages through FrFT. Previous works [3, 29] propose con-
volution operations incorporating additional chirp factors with signal product trans-
formations. However, these approaches do not fully adhere to the classical Fourier
transform’s convolution theorem, as similar limitations are observed in [20, 21]. This
paper aims to characterise the convolution operator to maintain consistency with
the traditional Fourier convolution theorem. Moreover, we investigate how signal
translations and convolutions behave within the time domain under varying FrFT
angles («). The proposed characterisation across multiple FrF'T domains may offer a
novel perspective on signal sampling and reconstruction [17]. Also, some of the prop-
erties of convolution operator alongwith graphical demonstrations are mentioned to
validate the novelty.

2.2. Fractional Fourier Transform. The FrFT of a signal s(t) at an angle a,
denoted by S, (u) [22], is expressed as follows:

Sa(u) z/Rs(t).Ka(u,t) dt,

s(t) = /R () K (u, 1) du.

For integer m, the transform kernel is given by

6(t_u)v if a=2mm
(1) Ko(u,t) = { 0(t +u), if a=(2m—1)r

2., .2
1—icota i ¥ ) cota—iutescar -
\/ T e ( 2 ) , if a#mm

where K (u,t) is a complex conjugate function of K, (u,t).
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3. MAIN RESULTS

3.1. p- generalised translation (7),(s(t)) = s(tfu)). It is favourable if we have
a time-domain operation that directly corresponds to a simple multiplication of
their fractional Fourier transforms (FrFTs) in the FrFT domain, which results in
the product Gqo(u).So(uw). However, the time-domain expression for this multiplica-
tion, as outlined in [13][p.157], is not simple for direct computation, as the authors
indicated. In this paper, by applying generalised convolution formula based on
generalised translation operator, we efficiently interpret and execute this operation,
validating our exploration of these concepts.

The authors probed a general signal(function) transform and its corresponding
Fourier-like inverse [22], focusing on the mathematical properties and implications
of this transformation.

(2) dw:Amw&mumew,

(3) Sa(u) = / p(t).s(t).K*(u,t) dt.
R
Further, the p-generalised translation [31] of s(t), i.e., s(t0u) is mentioned as
(4) s(t0p) = [ (0. 0) I, ) K () .
R

The parameter 6 in the function s(t0u) represents the generalised time delay operator
corresponding to generalised translation. Here, K (u, u) is the kernel of transforma-
tion, where ‘¢’ is replaced by the translation parameter ‘u’, K*(u,t) represents the
conjugate of kernel of the transformation and p(u) is the weight function. The shift
property of the conventional FT, given by F(s(t — p)) = S(u).e~™#, syncs with the
defined generalised translation.

Considering the specific case of FrFT, where the weight function is constant and
the kernel matching the FrF'T, equation 4 simplifies to

(5) (t9 ) |CSCO¢| e(TftQ cot o u(t— u)cscozdu

Vi %E/S

We can derive equation 5 as follows.

1+ icot 1—icot (u24p? )
) = [ EEPE [ [ (e

2

e z(“ ;rt )cota—iutcsoad
|CSCO¢| Cota/s iu(tfu)csca du
2w
|csca| (

& cota /S u(t— H)cscadu
V2 V2r

For o = w, m € Z, equation 5 can be reduced to s(t — u), which is the nor-

mal translation along time domain. As an example, from figure 1, normal translation
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FIGURE 4. Convolution of box function and Gaussian function com-
puted for various values of «.

can be obtained when we fix o = % The distinction between conventional FT and

FrFT is obvious with restricted fractional Fourier kernel’s influence, manifesting in
transformations under generalised translation. Varying translation parameters yield
notable changes when the order («) changes, highlighting its pivotal role in the
transformation process. These changes can be seen from figure 2 and figure 3.

Using the p-generalised translation of the signal s(¢) by u, a generalised convolu-
tion in the time domain is derived, which is defined as
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S(H)Oq(t) = /R (1) (t6ps) ds

e .
_ ‘CSCO&| S(M)GZ(HT) cota/ Qa(u).ezu(t—u)csca du dlff
(© var :

:\csca|\/217r—icota///f(u)gt,

2,2, 2. 2
2(‘%) cot a.e—iu(t/+t—,u,)

X e S dudp dt’,

where © denotes generalised convolution in time domain [18, 22].
The introduction of FrFT paved the way for more general concept of fractional

convolution with the building blocks of the traditional convolution operators, ex-
pected to be more versatile and enhanced flexibility.

Noticeably, the FT and FrFT exhibit distinct differences. Upon applying gen-
eralised convolution, the impact of the fractional Fourier kernel becomes evident
through the transformation across various fractional values of the order («). The
visual representations reveals a pronounced effect when box function is convoluted
with Gaussian function, see figure 4.

3.2. Generalised Convolution Theorem (GCT) of FrFT in Time Domain.

Theorem 3.1. Let S} (u) and S2(u) are the fractional Fourier transforms of s1(t)
and so(t), respectively. The fractional Fourier transform of generalised convolution
of s1(t) and so(t) is equal to the product of fractional Fourier transforms of s1(t)
and s2(t) in the transformed domain, i.e,

(7) Sa(s1(1)0s2(t)) = Sa(s1(1))-Sa(s2(t)) = S4(u).S3 (u)
Proof :
Let S_4(.) denotes the inverse FrFT. Then,

S (Sl /Sl SQ llJF’LCOtOé e*i(#) cot a+iut csc o du
_ |CZCOZ‘//81(M).61 2 )cota—iuucscadlu
Y

52 (u) e~ (4

:|csca\// _Z(tz—u

51(t)Osa(t)

) cot a+iut csc du

><

2 ) cot a+iu(t—p) csc o dudpu

This equation is crucial for analog filtering [3] in the FrFT domain. Notably, when
a = 7, the generalised convolution becomes conventional Fourier transform convo-
lution as evident from equation 7.
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3.3. Some Properties of Generalised Convolution Operator.

proposition 3.1. Suppose s1(t), so(t) and s3(t) are three signals with fractional
Fourier transforms S} (u), S2(u) and S3(u), respectively. For c,ci,c2 € K(R or C),
the following properties holds

(i) $1(t)Os2(t) = s2(t)Os1(t).

(ii) c.51(t)Os2(t) = s1(t)Oc.s2(t) = c.(51(t)Os2(t)).

(iii) s1()O(s2(t) + s3(t)) = (51(t)Os2(t)) + (51(£)Os3(t)).

(iv) (c1-s1(t) + c2.52(1))Os3(t) = c1(s1(t)Os3(t)) + ca(s2(t)Os3(t))-
Proof

(i)

53(t)@s1 (1) = /R sa(4) .31 (t01)dp

:/ |CSC‘ S( z cota Sl zu(t ucscadudu
R

/11— t
|CSC| ;7(;0 a///82 > )COta.Sl(tl)

z(“ +t )cota iut’ csca ezu( )Cscadud,udt

|csca| [1— jeota / / / oa(t). 51 (s (t/:),t tu’in )com
2

—zu(t +u—t) cscadud‘udt/

= /R s1(p).s2(t0p)dp
= 51(t)Os2(t).

c.51(t)Osa(t)

c.51(t).s2(t0u)du

/.
‘CSC| cota/ 2 zu(t p)esea
= ) —_— d
/Rcsl(u) . Sa( u.
/.

‘CSCl cotoz Sl zu(t 1) esea qo
Com

$2(t)Oc.s1(t) = c(s2(t)Os1(t )
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(ii)
51(1)O(s2(t) + s3(t

%\»%\

s1(p)(s2 + s3)(t0p)dp

|csca| (

2)cota 2 3 U
/R<Sa+sa>< )

% ez(t 1) esea g,

CcSco
2/81 | | cota/s2 i(t— u)cscadu
R

+/R$1(,u)|c;7c_‘_a| cot(x/s3 i(t— p)cscad
= (51(£)Os2(t)) + (51(t)Os3(t))

(iv) Using property (ii) and (¢4i),

(Cl.Sl(t) + CQ.SQ(t))(")Sg(t) = (Cl.Sl(t)983(t)) + (CQ.SQ(t)(")Sg(t))
= c1(51(t)Os3(t)) + ca(s2(t)Os3(t)).

Hence the proposition.
2

Remark: If we consider the case where, s1(t) = s2(t) = e™2

2
and s3(t) = e(T+2t) for a = %, associative property does not holds.

4. CONCLUSION

In this paper, we developed a characterisation of convolution operator in time
domain using generalised translation of FrFT. The results are verified with suitable
examples. When a = w, m € Z, only, the translation retains the character-
istics of the conventional FT. However, when « # "%, m € Z, the translations of
the function shows the supriority of FrFT over FT. Using some examples, we have
shown that the generalised fractional convolution operator preserves the convolu-
tion properties of conventional FT. Moreover, we see that under certain restrictions,
some properties of conventional FT convolution operator shaking hands with our
proposed fractional Fourier convolution operator. In near future, we are planning
to explore further applications of FrF'T convolution methods in image processing.

ACKNOWLEDGEMENTS

The authors are extremely thankful to the anonymous reviewers and editor for
their constructive feedback towards the improvement of this paper.

REFERENCES

1. A. C. McBride, F. H. Kerr, On Namias’s fractional Fourier transforms, IMA Journal of Applied
Mathematics. 39 (1987), 159175.

2. A. Cusmario, Cryptographic method using modified fractional Fourier transform kernel, US
Patent No. 6718038(2004).

3. A. L. Zayed, A convolution and product theorem for the fractional Fourier transform, IEEE
Signal Processing Letters. 5 (1998), 101-103.

4. A. K. Singh, R. Saxena, On convolution and product theorems for FRFT, Wireless Personal
Communications. 65 (2012), 1-13.

477



478

D Ot

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Pankaj Sharma and Sreesaiv Jm

A. Vretblad, Fourier analysis and its applications, Graduate Texts in Mathematics, 2003.
B. Barshan, B. Ayrulu, Fractional Fourier transform pre-processing for neural networks and its
application to object recognition, Neural Networks. 15 (2002), 131140.

. E. Sejdi, I. Djurovi, J. Jiang, Timefrequency feature representation using energy concentration:

an overview of recent advances, Digital Signal Processing. 19 (2009), 153-183.

. E. Sejdi, I. Djurovi, J. Jiang, L. J. Stankovic, Timefrequency based feature extraction and clas-

sification: considering energy concentration as a feature using Stockwell transform and related
approaches, VDM Verlag Publishing, Saarbrucken, Germany, (2009).

. E. Sejdi, I. Djurovi, L. J. Stankovi, Fractional Fourier transform as a signal processing tool: an

overview of recent developments, Signal Processing. 91 (2011), 13511369.

G. Gbur, E. Wolf, Relation between computed tomography and diffraction tomography, Journal
of the Optical Society of America : Optics and Image Science and Vision. 18 (2001), 21322137.
H. M. Ozaktas, B. Barshan, D. Mendlovic, Convolution and filtering in fractional Fourier
domains, Optical Review. 1 (1994), 1516.

H. M. Ozaktas, M. A. Kutay, D. Mendlovic, Introduction to the fractional Fourier transform
and its applications, Advances in Imaging and Electron Physics. Elsevier. 106 (1999), 239291.
H. M. Ozaktas, Z. Zalevsky, M.A. Kutay, The fractional Fourier transform with applications in
optics and signal-processing, Wiley, New York, (2001).

H. Sun, G. S. Liu, H. Gu, W. Su, Application of the fractional Fourier transform to moving
target detection in airborne SAR, IEEE Transactions on Aerospace and Electronic Systems. 38
(2002), 14161424.

I. Djurovi, S. Stankovi, 1. Pitas, Digital watermarking in the fractional Fourier transformation
domain, Journal of Network and Computer Applications. 24 (2001), 167173.

I. S. Yetik, M. Kutay, H. M. Ozaktas, Image representation and compression with the fractional
Fourier transform, Optics Communications. 197 (2001), 275278.

J. Ma, R. Tao, Research progress of the sampling theorem associated with the fractional Fourier
transform, Journal of Beijing Institute of Technology. 30 (2021), 195-204.

J. Shi, J. Zheng, X. Liu, W. Xiang, Q. Zhang, Nowvel short-time fractional Fourier transform:
theory, implementation, and applications, IEEE Transactions on Signal Processing. 68 (2020),
3280-3295.

J. Shi, X. Liu, N. Zhang, On uncertainty principle for signal concentrations with fractional
Fourier transform, Signal Processing. 92 (2012), 28302836.

J. Shi, X. Sha, X. Song, N. Zhang, Generalized convolution theorem associated with fractional
Fourier transform, Wireless Communications and Mobile Computing. 14 (2014), 1340-1351.

J. Shi, Y. Chi, N. Zhang, Multichannel sampling and reconstruction of bandlimited signals in
fractional Fourier domain, Signal Processing Letters, IEEE. 17 (2010), 909 - 912.

K. K. Sharma, S. D. Joshi, Papoulis-like generalized sampling expansions in fractional Fourier
domains and their application to superresolution, Optics Communications. 278 (2007), 52-59.
L. B. Almeida, Product and convolution theorems for the fractional Fourier transform, IEEE
Signal Processing Letters. 4 (1997), 15-17.

L. B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE
Transactions on Signal Processing. 42 (1994), 3084-3091.

L. P. Castro, L. T. Minh, N. M. Tuan, Filter design based on the fractional Fourier transform
associated with new convolutions and correlations, Math Sci. 17 (2023), 445454.

M. Bahri, S. A. Abdul Karim, Fractional Fourier transform: main properties and inequalities,
Mathematics. 11 (2023), 1234.

M. Bahri, R. Ashino. Convolution and correlation theorems for Wigner-Ville distribution asso-
ciated with linear canonical transform, In proceedings of the 12th international conference on
information technology-new generations, Las Vegas, NV, USA, (2015), 1315.

P. K. Anh, L. P. Castro , P. T. Thao, Two new convolutions for the fractional Fourier transform,
Wireless Personal Communications. 92 (2) (2017), 623637.

P. Kraniauskas, G. Cariolaro and T. Erseghe, Method for defining a class of fractional opera-
tions, IEEE Transactions on Signal Processing. 46 (1998), 2804-2807.

Q. Feng, R. Wang, Fractional convolution, correlation theorem and its application in filter
design, Signal, Image and Video Processing. 14, 10.1007/s11760-019-01563-9(2020).



Characterisation of fractional convolution operator in time domain

31. R. J. Marks II, Advanced topics in Shannon sampling and interpolation theory, Springer-Verlag,
New York, 1993.

32. S. Shinde, V. M. Gadre, An uncertainty principle for real signals in the fractional Fourier
transform domain, IEEE Transactions on Signal Processing. 49 (2001), 25452548.

33. T. Alieva, Fractional Fourier transform as a tool for investigation of fractal objects, Journal of
the Optical Society of America. 13 (1996), 11891192.

34. V. Namias, The fractional order Fourier transform and its application to quantum mechanics,
IMA Journal of Applied Mathematics. 25 (1980), 241265.

35. X. Guanlei, W. Xiaotong, X. Xiaogang, The logarithmic, Heisenbergs and short-time uncertainty
principles associated with fractional Fourier transform, Signal Processing. 89 (2009), 339343.

36. Y. Wang, Fractional Fourier transform and its application, Theoretical and Natural Science.
10.54254/2753-8818/42/20240103. 42 (2024), 8-12.

DEPARTMENT OF MATHEMATICS, RAMANUJAN SCHOOL OF MATHEMATICAL SCIENCES, PONDICHERRY
UNIVERSITY, R V NAGAR, KALAPET, PUDUCHERRY-605014, INDIA
E-mail address: pankajsharma@pondiuni.ac.in

DEPARTMENT OF MATHEMATICS, RAMANUJAN SCHOOL OF MATHEMATICAL SCIENCES, PONDICHERRY
UNIVERSITY, R V NAGAR, KALAPET, PUDUCHERRY-605014, INDIA
E-mail address: sreesaivjm1234@pondiuni.ac.in

479



